

Cambridge IGCSE[™]

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

COMBINED SCIENCE

0653/31

Paper 3 Theory (Core)

May/June 2022

1 hour 15 minutes

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.

INFORMATION

- The total mark for this paper is 80.
- The number of marks for each question or part question is shown in brackets [].
- The Periodic Table is printed in the question paper.

BLANK PAGE

1 Fig. 1.1 is a diagram of the female reproductive system in humans.

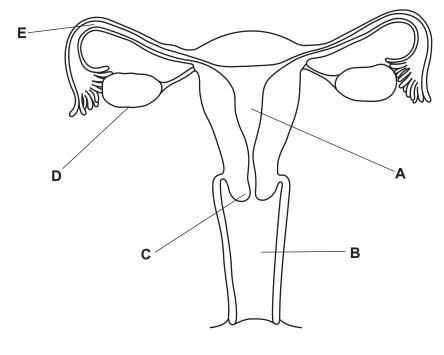


Fig. 1.1

(a)	State the letter in Fig. 1.1 that shows:
	the position of the cervix
	where fertilisation takes place
	where the fetus develops
(b)	Describe what happens to the lining of the uterus during the first few days of the menstrua cycle.
	[1]
(c)	Complete these sentences about fertilisation in humans.
	The fusion of the nuclei of the egg and sperm produces a fertilised cell called a

[Total: 6]

[2]

This cell divides to form a ball of cells called an

			4					
(a)	An	aqueous solution of	salt MX is made by dissolving s	solid MX in water.				
	(i)	Identify the solvent	and the solute in aqueous MX .					
		solute						
		solvent						
	(ii)	A student tests sen	parate samples of aqueous MX .					
	(/	The results are sho	•					
			1 by naming the ions that these	tests show are in aqueous MX				
		Complete Table 2.	Table 2.1	toole onew are in aqueeue inze	1			
		test	result	name of ion				
	а	dd aqueous sodium hydroxide	green precipitate, insoluble in excess	name or ion				
	а	idd aqueous barium ions under acidic conditions	white precipitate					
			<u>I</u>					
(b)	As	tudent makes an aqı	ueous solution of MX by reactin	g excess metal M with dilute ac	id H			
	The	e student then separ	ates the excess, unreacted solid	d metal M from the reaction mix	cture			
	(i)	Suggest how the s	tudent separates solid metal M	from the reaction mixture.				
	(ii)	State whether this separation process is a chemical change or a physical change.						
		Explain your answer.						
		change						
		explanation						

(iii)	State the effect of increasing the temperature on the rate of this reaction.
	[1]
(iv)	During the reaction between metal M and dilute acid H X , atoms of M become cations.
	Explain how atoms become cations.
	[1]
(v)	Suggest what happens to the value of the pH of the reaction mixture during the reaction between excess metal $\bf M$ and dilute acid $\bf H \bf X$.
	[1]
	[Total: 9]

3 Fig. 3.1 shows a man pushing a shopping trolley forwards.

Fig. 3.1

(a) Fig. 3.2 shows four forces, P, Q, R and S, acting on the shopping trolley as the man pushes it.

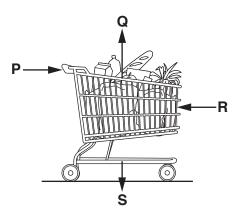


Fig. 3.2

State the name of force S.

.....[1]

- (b) The man pushes the trolley with force $P = 15 \, \text{N}$. The trolley moves at a constant speed.
 - (i) State the magnitude of force R.

(ii) The man increases force P to 20 N.

Forces **Q**, **R** and **S** do not change.

Calculate the resultant force on the trolley.

resultant force = N [1]

	(iii)	Describe how the change in force	ee P affects the motion of the trolley.						
			[1						
(c)	As t	he man pushes the trolley, he tra	nsfers 150 J of energy to the trolley.						
	(i)	State the work done on the trolley by the man. Give the unit of your answer.							
			work done = unit [1	1]					
	(ii)	Complete the boxes to show the	useful energy transfer as the man pushes the trolley.						
		energy stored	energy of the						
		in the man	moving trolley [2	2]					
	(iii)	The man lets go of the moving tr	rolley. The trolley slows down and stops.	-					
		Explain why the trolley slows do	wn.						
			[2	2]					
			[Total: 9	}]					

4 (a) Fig. 4.1 is an image of a white blood cell.

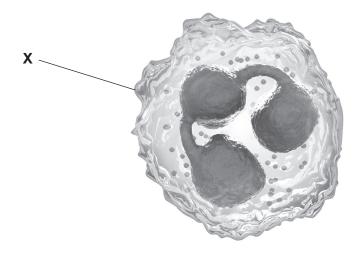


Fig. 4.1

- (ii) Use Fig. 4.1 to state **two** reasons why this cell is **not** identified as a plant cell.
- (iii) State one function of white blood cells.

(i) Identify the part labelled **X** in Fig. 4.1.

-[1]
- **(b)** A blood sample can be separated into its main components.

Fig. 4.2 is a diagram showing a separated blood sample.

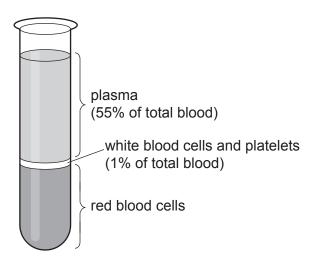


Fig. 4.2

	(i)	Calculate the	e percentage of bl	ood that is red	blood cells in	Fig. 4.2.			
							9	% [1]	
	(ii)	Red blood c	ells transport oxyg	en.					
		Explain why	oxygen moves fro	m the lungs in	to red blood ce	ells.			
		Use ideas al	bout diffusion in yo	our answer.					
								[2]	
(c)	Bloo	od plasma tra	nsports soluble m	olecules.					
	Lar	ge insoluble fo	ood molecules in o	our diet are dig	ested into sma	II soluble mol	ecules.		
	(i)	Circle the na	ame of the soluble	molecules pro	teins are made	e from.			
	amii	no acids	fatty acids	glycero	ol glud	ose	starch	[1]	
	(ii)	Complete th	ese sentences ab	out digestion.					
		Choose wor	ds from the list.						
		Each word n	nay be used once,	more than on	ce or not at all.				
	a	ctive	absorption	anus	egestion	excret	ion		
		ingestion	pancreas	oeso	ohagus	mechanica	I		
		Food is take	n into the mouth b	y the process	of				
		The food the	en passes down th	e		. to the stoma	ch.		
		In the stoma	ch there are two t	ypes of digesti	on, chemical a	nd			
		Food that ha	as been digested p	asses into the	blood by the p	rocess of			
								[4]	
							[Tota	l: 12]	

(a)	Fos	sil fuels release heat energy during combustion.
	(i)	State the name given to any chemical reaction that releases heat energy.
	(ii)	State the name of the fossil fuel in which methane is the main constituent. [1]
((iii)	Complete the dot-and-cross diagram in Fig. 5.1 to show all the outer shell electrons in a molecule of methane.
		H
		H C H
		Н
		Fig. 5.1 [2]
(b)	Mag	gnesium burns in pure oxygen to form compound Y only.
		npound ${f Y}$ is a white solid base that reacts with dilute sulfuric acid to form compound ${f Z}$ water only.
	(i)	State whether magnesium is oxidised or reduced when it burns.
		Explain your answer.
		[1]
	(ii)	Identify compound Y and compound Z .
		compound Y
		compound Z [2]

(iii)	Describe two physical properties of magnesium.
	1
	2[2]
	[Total: 9]

6	(a)	Elec	ctroma	agnetic wave	es transfer er	nergy through	space from	the Sun to the	Earth.	
		(i)	State radia		nis transfer o	of energy thre	ough space	is by conducti	on, convection	on or
			Expla	ain your ans	wer.					
										[2]
		(ii)	Fig. 6	6.1 shows ar	n incomplete	electromagn	etic spectrum	1.		
			The	Sun emits w	aves in all pa	arts of the ele	ctromagnetic	spectrum.		
			Com	plete Fig. 6.	1 to show all	parts of the e	electromagne	tic spectrum.		
					•	—— increas	sing frequenc	ey .		
				X-rays	ultraviolet	visible light		microwaves		
						Fig. 6.1				[2]
		(iii)	Visib	le light wave	es take 8 min	utes to travel	from the Sur	n to the Earth.		[-]
			Sugg	gest how long	g it takes for	ultraviolet wa	ves to travel	from the Sun t	o the Earth.	
			Give	a reason for	r your answe	r.				
			time	taken						
			reaso	on						
										[1]

(b) Fig. 6.2 shows the Sun shining on a puddle of water. A student sees an image of the Sun in the puddle of water.

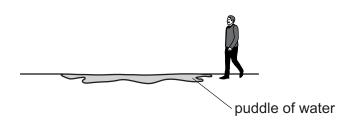


Fig. 6.2

(i) The puddle acts as a plane mirror.

On Fig. 6.2, draw a ray diagram to show how the student can see an image of the Sun in the puddle.

Your diagram should include the position of the image of the Sun. [3]

(ii)	Explain, in terms of water molecules, what happens as the Sun transfers energy to the puddle and the water in the puddle dries up.
	ioi

[Total: 10]

7 (a) Fig. 7.1 shows part of a food web from the ocean.

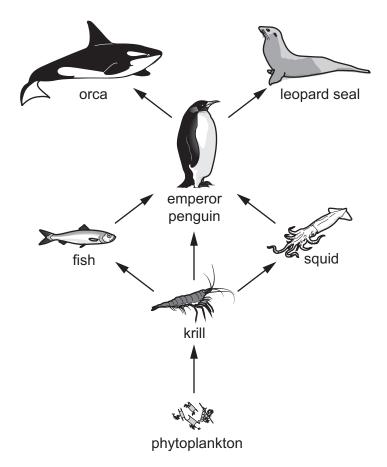


Fig. 7.1

(1)	Define the term producer.	
(ii)	Identify a primary consumer in Fig. 7.1.	
		[1]
(iii)	Identify two organisms eaten by emperor penguins in Fig. 7.1.	
	1	
	2	[1]
(iv/)	Orego also get fish	[1]
(iv)	Orcas also eat fish.	
	Draw one arrow on Fig. 7.1 to show this feeding relationship.	[1]

(b) Fig. 7.2 shows part of the carbon cycle.

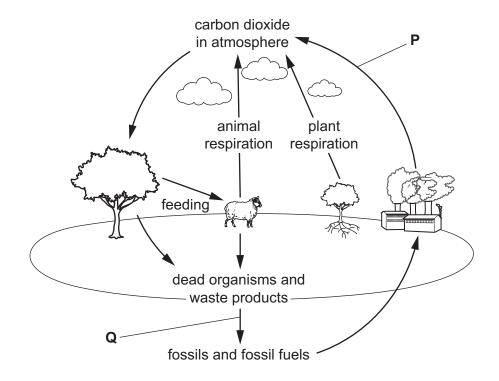


Fig. 7.2

(i) Identify processes P and Q in Fig. 7.2.

Р	
Q	
	[2]

(ii) Deforestation increases the concentration of carbon dioxide in the atmosphere.

List two other undesirable effects of deforestation.

1	
2	

[Total: 9]

[2]

8	(a)	Lith	ium, sodium and potassium are metals in Group I of the Periodic Table.	
		Chlo	orine, bromine and iodine are halogens in Group VII of the Periodic Table.	
		Heli	um, neon and argon are elements in Group VIII of the Periodic Table.	
		(i)	State the trend in the density of the elements going down Group I.	
				[1]
		(ii)	State the trend in the colour of the elements going down Group VII.	
				[1]
		(iii)	Identify one similarity between the elements in Group VIII.	
				[1]
	(b)	Alur	minium, calcium, iron and sodium are in different groups of the Periodic Table.	
		Plac	ce these metals in order of reactivity, from most to least reactive.	
			most reactive	
			least reactive	[2]
	(c)	An a	atom of sodium is represented as shown.	
			²³ Na	
		Ded	luce the number of protons and the number of neutrons in this atom.	
		prot	ons	
		neu	trons	[2]
	(d)	Stat	te one use of helium.	
				[1]

[Total: 8]

BLANK PAGE

9 (a) Complete the following sentences using the terms shown.

Each term may be used once, more than once or not at all.

	current	positive charge	ohms							
	resistance	series	volts							
A flow of electric	charge is called	a								
An ammeter is used to measure										
A potential differ	ence is measured	d in		[3]						

(b) Fig. 9.1 shows an electric circuit.

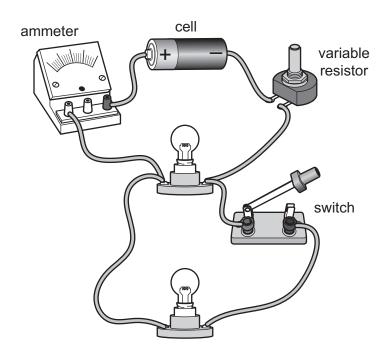


Fig. 9.1

(i) Fig. 9.2 shows an incomplete circuit diagram for the circuit in Fig. 9.1.

On Fig. 9.2, complete the circuit diagram.

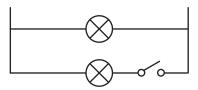


Fig. 9.2

[3]

(ii) When the switch is off, the reading on the ammeter is 0.5A.

When the switch is on, the reading on the ammeter increases.

Explain why the reading on the ammeter increases.

.....

[Total: 8]

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

© UCLES 2022

The Periodic Table of Elements

	=		ď	E	_	m	_		_	_	۶			uo		ď	E -	_	_	E			
	=	2	Ĭ	helium 4	10	ž	neo	77	2	₹	argc 40	36	Ϋ́	krypt	54	×	xenc	88	Š	radc			
	=				6	ш	fluorine	1 3	۱,	C	chlorine	35	Ŗ	bromine	23	Н	iodine 127	85	Αt	astatine -			
	>				8	0	oxygen	<u>o</u> 9	91	ഗ	sulfur 32	8 8	Se	selenium 79	52	<u>e</u>	tellurium 128	2 8	Ро	polonium –	116	^	livermorium -
	>				7	z	nitrogen	4 t	cl c	<u></u>	phosphorus 31	33	As	arsenic 75	51	Sp	antimony	83	Bi	bismuth 209			
	2				9	ပ	carbon	71 ;	4 1	<u>i</u>	silicon 28	32	Ge	germanium 73	20	Sn	ţi.	82	Pp	lead 207	114	Ŀ	flerovium –
	≡				2	В	poron	= 5	5 ,	Αl	aluminium 27	i &	Ga	gallium	49	In	indium 115	8 2	lΤ	thallium 204			
												30	Zu	zinc	48	В	cadmium 11.2	80	Ε̈́	mercury 201	112	ပ်	copernicium
												29	no	copper	47	Ag	silver	62	Αn	gold 197	111	Rg	oentgenium -
dr												28	z	nickel	46	Pd	palladium 106	78	五	platinum 195	110	Ds	darmstadtium -
Group												27	ပိ	cobalt	45	뫈	rhodium	22	ı	iridium 192	109	¥	meitnerium -
		-	I	hydrogen 1								26	Fe	iron	8 4	Ru	ruthenium	92	SO	osmium 190	108	H	hassium -
					J							25	Mn	manganese	43	ည	technetium	75	Re	rhenium 186	107	B	bohrium –
						Г		S				24	ပ်	chromium	42	Mo	molybdenum	74	>	tungsten 184	106	Sg	seaborgium -
				Key	atomic number	atomic symbo	name	relative atomic mass				23	>	vanadium 51	2 4	q	niobium	73	<u>n</u>	tantalum 181	105	Op	dubnium –
					a	ator		relat				22	F	titanium	40	Zr	zirconium	72	Ξ	hafnium 178	104	꿆	rutherfordium -
												21	လွ	scandium	39	>	yttrium	57–71	lanthanoids		89–103	actinoids	
	=				4	Be	beryllium	n (77	Mg	magnesium 24	20	Ca	calcium	38	Š	strontium	26	Ва	barium 137	88	Ra	radium
	_				3	:=	lithium	- ;	Ε :	Na	sodium 23	19	×	potassium	37	S S	rubidium	22	S	caesium 133	87	ъ.	francium -

7.1	Ę	lutetium	175	103	۲	lawrencium	I
02	Υp	ytterbium	173	102	å	nobelium	I
69	H	thulium	169	101	Md	mendelevium	I
89	ш	erbinm	167	100	Fm	ferminm	I
29	운	holmium	165	66	Es	einsteinium	I
99	ò	dysprosium	163	86	ŭ	californium	I
65	Q L	terbium	159	26	番	berkelium	I
64	ဗ	gadolinium	157	96	Cu	curium	I
63	П	europium	152	98	Am	americium	I
62	Sm	samarium	150	94	Pn	plutonium	I
61	Pa	promethium	I	93	ď	neptunium	I
09	PZ	neodymium	144	92	\supset	uranium	238
59	ሷ	praseodymium	141	91	Ра	protactinium	231
28	Ö	cerium	140	06	Ļ	thorium	232
22	Га	lanthanum	139	88	Ac	actinium	ı

lanthanoids

actinoids

The volume of one mole of any gas is $24\,dm^3$ at room temperature and pressure (r.t.p.).